

**WHY PROMOTE NATURAL
REFRIGERANTS IN AC&R
APPLICATIONS? & THEIR CURRENT
GLOBAL APPLICATIONS**

By
Ramesh Paranjpey
Fellow Life Member ASHRAE
ASHRAE Distinguished fifty year service award-2020
Chairman ISHRAE Technical group –Refrigeration
Chairman AAR standards committee
15th April 2021

1

**Natural Refrigerants
(Zero ODP & Ultra-low GWP Refrigerants)**

- Ammonia NH₃ (R-717)
- Carbon Dioxide CO₂ (R-744)
- Air (R-729)
- Water H₂O (R-718)
- Sulphur dioxide SO₂(R764)
- Hydrocarbons (HC-290-Propane, HC-600a-Isobutane and R-1270 Propylene & others

2

What is the need for use of Natural refrigerants ?

Reasons

1. No Global warming
2. Refrigerants known to mankind since the life came to earth
3. Offer no regret solution
4. Environmentally safe solutions

3

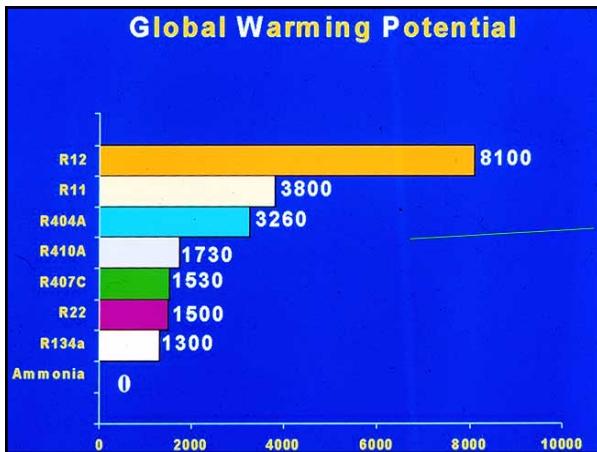
CURRENT SITUATION-GLOBAL WARMING

1. Air conditioning and refrigeration industry consumes more than 40 % of total world production of energy.
2. 40% of Building Power consumed by comfort- Air Conditioning

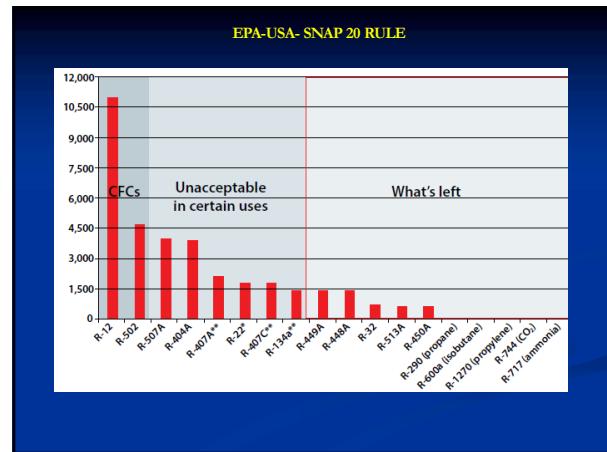
Ref.: ASHRAE Journal September-2014

4

**TWO TYPES OF GLOBAL WARMINGS BY
HVAC&R**

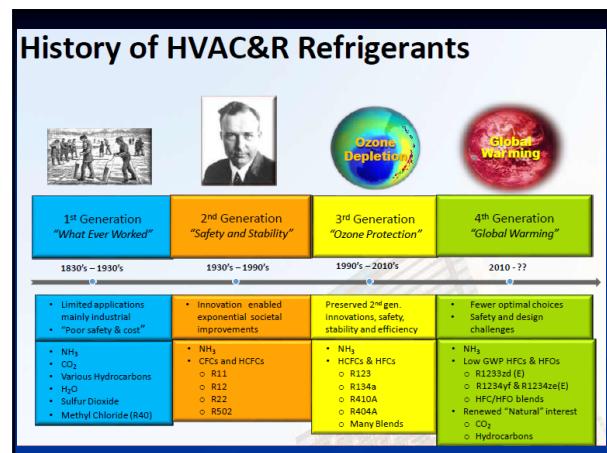

- 1.. Direct Global warming due to leakage of Refrigerants- Depends on type of Refrigerant and quantity of refrigerant charge in the system
- 2.. Indirect GWP from equivalent CO₂ emission due to energy consumption over the life time(TEWI)It is important to note that 90% GWP contribution in HVAC&R comes from energy consumption & every kWh of extra power contributes nearly 0.8kg of CO₂

5


Various conference leading to acceptance of use of natural refrigerants

1. MONTREAL PROTOCOL-SEPTEMBER 1987-CFC PHASEOUT SCHEDULE
2. KYOTO PROTOCOL-11TH DECEMBER 1997-REDUCE EMISSION GASES CAUSING GLOBAL WARMING
3. KIGALI AGREEMENT-25TH OCTOBER 2016-PHASE OUT HFC -HIGH GLOBAL WARMING REFRIGERANTS
4. EPA SNAP RULE-OCTOBER 2016-PHASE OUT R134A,R404A, ETC.-HIGH GLOBAL WARMING REFRIGERANTS
5. PARIS AGREEMENT-NOVEMBER 2016-HFC PHASE DOWN IN 30 YEARS
6. KATOWICE POLAND(COP24)-DECEMBER 2018-LIMIT TEMPERATURE RISE BELOW 2^oC

6


7

8

9

10

ASHRAE POSITION DOCUMENT ON AMMONIA AS A REFRIGERANT
Approved by ASHRAE Board of Directors July 2, 2014

1. Ammonia has been continuously used as a refrigerant since the initial practical use of the vapor-compression refrigeration cycle was developed.
2. It has remained the main refrigerant used in industrial refrigeration systems because of its superior thermodynamic properties and low cost.
3. Restrictions on CFC, HCFC and many HFC refrigerants have re-focused attention on ammonia to emerge as one of the widely used refrigerants that, when released to the atmosphere, does not contribute to ozone depletion and global warming.
4. ASHRAE considers that the continued use of ammonia is necessary for food preservation and air conditioning.
5. ASHRAE promotes a variety of programs such as a dedicated chapter in the Refrigeration Handbook and several current and former research projects to preserve the economic benefits of ammonia refrigeration while providing for the management of risks.

11

ASHRAE JOURNAL February 2017- Page22

“Changing rules around the use of high global warming potential (GWP) refrigerants have been one of the hottest topics in the HVAC&R industry in the last few years. Following the phase out of ozone-depleting refrigerants starting in the 1990s, the U.S. EPA, acting under the Significant New Alternatives Policy (SNAP) program, has recently changed the status of certain high GWP refrigerants. In the next several years, refrigerants such as R-404A, R-507A, R-134a, and others will be prohibited for use in some types of new or retrofit commercial refrigeration installations”

12

Comparison of Various Refrigerants

ASHRAE Fundamentals 2013 Table 8-29.8

Refrigerants										29.9		
Table 9 Comparative Refrigerant Performance per Ton of Refrigeration												
No.	Chemical Name or Composition (% by mass)	Evap- orator pressure psia	Com- pressor pressure psia	Com- pressor pressure ratio	Refrig- erating power Btu/lb	Liquid circu- lation lb/min	Specific volume ft ³ /lb	Com- pression of section displace- ment cu in/min	Consump- tion rate hp	Coeffi- cient of perf- ormance at discharge temp., °F		
170	Ethane	233.2	672.8	2.88	69.5	0.81	0.35	0.541	3.27	0.489	2.7	121.73
744	Carbon dioxide	326.9	1041.4	3.19	57.3	0.51	0.10	0.269	1.03	0.257	2.69	157.73
170	Propane	319	870.4	2.71	134.1	0.71	0.16	0.191	0.77	0.55	3.5	133.33
298	Propane	41.5	155.9	3.76	119.5	0.47	0.12	2.502	8.73	0.292	4.5	96.53
502	R-22/115 (48.8/51.2)	49.7	190.3	3.83	45.6	1.25	0.13	0.814	7.59	0.306	4.38	100.13
507A	R-12/21/13 (50/50)	55.6	211.6	3.85	47.4	1.20	0.14	0.814	7.31	0.321	4.18	94.73
404A	R-134a/12/13/14/24/24/4	59.3	208.0	4.00	49.0	1.16	0.14	0.745	7.45	0.313	4.03	94.53
410A	R-32/12/13 (50/50)	69.3	271.5	3.92	72.2	0.77	0.09	0.873	5.64	0.298	4.41	123.53
125	Pentane	58.5	226.4	3.87	36.7	1.51	0.16	0.631	7.12	0.327	3.99	87.53
22	Chlorodifluoromethane	40.6	172.2	4.27	60.1	0.70	0.16	1.261	7.52	0.375	4.07	113.13
12	Dichlorodifluoromethane	26.3	107.5	4.09	50.3	1.12	0.10	1.479	12.43	0.284	4.7	100.13
500	R-11/12/2a (73.8/26.2)	31.0	127.1	4.09	60.1	0.98	0.10	1.504	10.54	0.284	4.6	105.53
407C	R-32/12/13/13a (23/25/52)	41.8	182.7	4.38	70.1	0.81	0.09	1.289	7.80	0.398	4.5	111.3
600	Propane	18.1	58.5	4.00	113.5	0.60	0.11	0.552	24.49	0.462	4.62	85.73
134a	Tetrafluoromethane	23.6	111.2	4.71	63.6	0.89	0.09	1.945	12.90	0.290	4.6	98.33
124	Chlorotetrafluorethane*	12.8	64.3	5.03	50.7	1.11	0.10	2.741	22.81	0.287	4.62	85.73
717	1,1,1,2-Tetrafluoroethane	34.1	146.7	4.74	63.6	0.70	0.11	0.513	4.71	0.371	4.65	85.73
600	Butane*	8.1	41.0	5.05	125.6	0.47	0.10	10.325	36.04	0.292	4.74	85.73
11	Trichlorofluoromethane	2.9	18.1	6.25	67.0	0.84	0.07	12.317	77.52	0.264	5.02	109.13
123	Dichlorofluoromethane	2.3	15.8	6.81	61.2	0.93	0.08	14.279	69.21	0.274	4.9	91.13
113	Trichlorofluoromethane*	1.0	7.8	7.71	52.7	1.04	0.08	26.940	209.02	0.268	4.81	85.73

*Superheat required.

WHY AMMONIA?

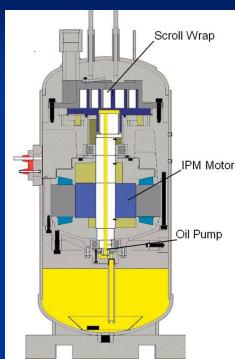
Ammonia C.O.P. (Efficiency) Comparison with other refrigerants for various applications

Refrigerant	For positive Temperature cold rooms- +40°C/2°C	For secondary fluids operation +40°C/-5°C	For low temperature cold rooms- +40°C/-25°C	Blast freezers/IQ F
Ammonia- R717	6.20	4.965	2.91	2.06
R410A	5.43	4.80	2.50	1.75
R134a	5.88	4.67	2.70	1.88
R404A	5.18	4.07	2.26	1.52
R22	5.93	4.74	2.79	1.98

13

14

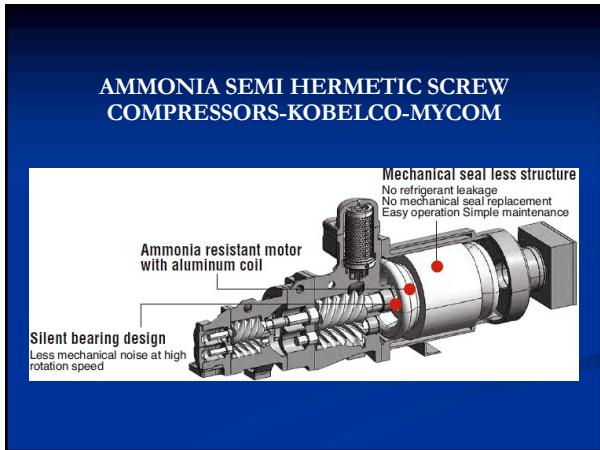
AMMONIA REFRIGERATION SAFETY STANDARD



15

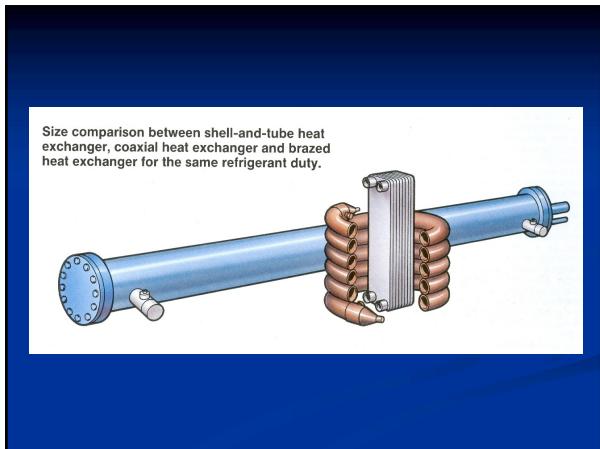
16

HERMETIC AMMONIA SCROLL COMPRESSOR



17

Semi Hermetic Ammonia Compressor with encapsulated copper winding motor


18

19

20

21

22

23

24

New Technology for use of encapsulated copper winding motors for Ammonia

A new electromotor technology is being developed now, using encapsulated copper windings or aluminium windings for semi-hermetic ammonia compressor. A hermetic scroll compressor for ammonia small refrigerating systems is announced and first small chilling units are sold on the market. The DX evaporators require miscible oil with ammonia; new compressor oil types are developed.

25

What is Low Charge Ammonia System

Low charge systems are defined as systems having no more than **1.3kg/kW**

Low charge factory made packaged refrigeration systems of less than **0.3kg/ton(3.517kW)** are available using shell and plate heat exchangers. Use of High side float eliminates use of H.P. receiver.

Systems with as low as **0.06kg/kW** charge are also available for some applications

Ref: ISHRAE JOURNAL JAN-March 2017-Star Refrigeration UK-R. Lamb

26

Low Ammonia Charge Systems-0.33kg/TR

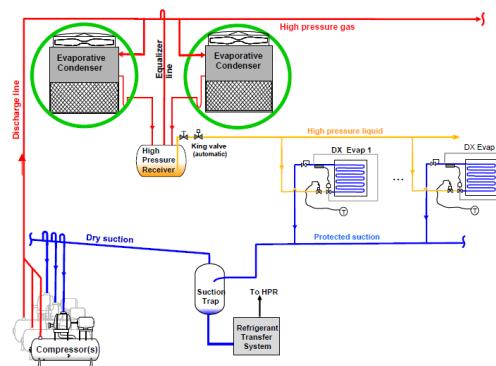
Andy Pearson-HAR presentation

Optimum charge systems have become very common, and the generally accepted benchmark is to achieve a specific charge of about **1.3kg/kW(0.8Lb/Ton)**.

As an example, a project at Walwyn Garden city in England involved such a standard. The system was designed to be quite large, with cooling capacity of 7500kW(2160TR), and was to use plate evaporators and condensers.

The job specifications stipulated that the charge was to be less than 250kg per chiller.

The eventual solution developed was to use three water chillers, each 2500kW(720TR) in capacity, and each requiring 238 kg(524Lbs) of ammonia upon commissioning.**(0.0952kg/kW)-(0.739lb/Ton)**


27

D-X -Low Charge Ammonia Systems-Advantages

1. Reducing the risk to workers & products associated with Ammonia leaks
2. Reducing Regulatory obligations
3. Can be used up to lowest -7°C temperature but used mostly for positive temperature
4. For freezer applications not suitable due to poor performance of evaporator
5. Colmac USA has patented the systems

28

Single stage – Direct-eXpansion (DX)

29

RECENT TRENDS-AMMONIA PAKAGE SYSTEMS

30

31

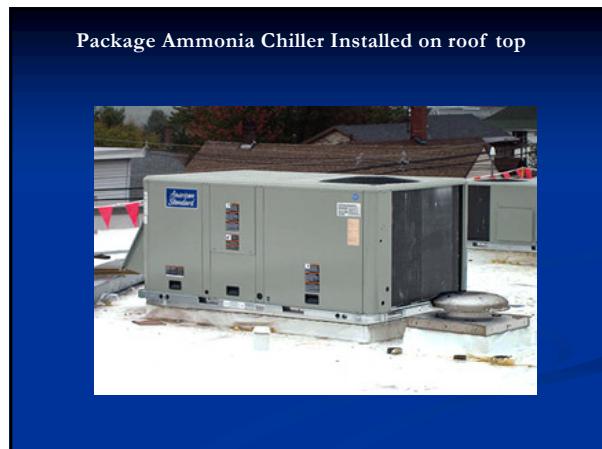
32

33

34

35

36


37


38

39

40

41

42

PACKAGE CHILLER ON ROOF TOP

43

AMMONIA AIR CONDITIONING APPLICATIONS

44

ASHRAE Journal –May 99-page14

William McCloskey, Executive vice President of Baltimore Air Coil said "IAR & its members must dedicate themselves to countering the negative perception about ammonia, not with the industry peers but with general public. This includes the faulty perception that city code prohibits use of ammonia in installations in metropolitan areas".

He cited an example that in several cities including Chicago which has restrictive codes, more than 140 urban ammonia installations are operating.

The air conditioning installations using ammonia include McCormick Place & W.W. Grainger office building. The 40 storey Blue Cross Blue Shield building that also has ammonia chillers for air conditioning.

45

USE OF AMMONIA REFRIGERANT IN COMFORT AIR CONDITIONING

1. Oslo Air Port -Norway
2. Heathrow Terminal -5 -4x6.6MW
3. Singapore Changi-Air Port
4. Stuttgart Airport Terminal 3-2300kW Grasso
5. Copenhagen Airport
6. Dusseldorf Airport
7. Zurich Airport
8. Christchurch Airport-New Zealand
9. KWN Greenpeace Headquarters office building-Vienna
10. Berlin Ostbahnhof train station-Grasso system for three storey building complex

46

USE OF AMMONIA REFRIGERANT IN COMFORT AIR CONDITIONING

11. Telephone Exchange- Copenhagen
12. Roche Headquarters office Building-in London -930 kW- Star Refrigeration
13. Sabb-Linkoping-Sweeden-4 ammonia chiller of 2 megawatt
14. Mulligan Letter sorting center-Switzerland-Jonson Controls
15. Ozaneum in Stralsund-Jonson controls-500kW A/C
16. DX systems with soluble oils in large Halls Process Plants
17. Thermal storage systems for Malls, Cinema Halls
18. Space Shuttles
19. Hanover Trade Fair Building -3.5MW
20. Homerton University Hospital- 2x 0.5MW

Ref: Euromon issue-Refrigerants by nature-2012

47

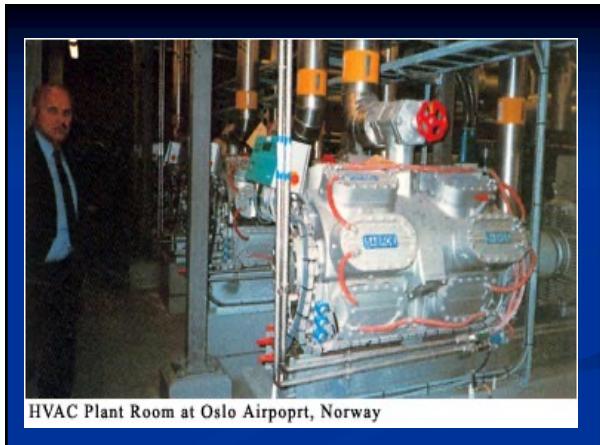
Oslo Airport Air conditioning system

An air conditioning installation with ammonia at Oslo Airport,

Norway which was commissioned in October 1998.

Total refrigeration capacity - 6300kW

Electrical Motors - 1720kW


(5 x 280) + (2 x 160)

Refrigerant charge (ammonia) 2500kgs

Plant uses Ammonia refrigerant in indirect cooling chilled water system, using 5 number reciprocating 16 cylinder compressors in one area & 2 number reciprocating compressors of 8 cylinders in another area.

This is one of the largest and most advanced airport having a capacity to handle 16 to 18 million passengers / year with 64 check in counters and handling 80 aircrafts per hour. The total operational building area is 18,000sq.mtr and commercial area 2.7 sq.km. The total area is 13 sq.km.

48

49

HEATHROW LONDON T-5 AIR CONDITIONING PLANT

To make the vast Terminal 5 virtually independent from the use of ozone-depleting and high global warming HCFCs and HFCs, all heating and cooling is done by a dedicated energy centre providing continuous supply of hot and chilled water for heating and air-conditioning respectively. All chillers operate with the non-ozone depleting and non global warming refrigerant ammonia (R717). The natural substance was selected by the airport authority because it was recognised as a future proof solution offering excellent efficiency. A thorough risk analysis and safety review removed last concerns regarding the system design and the installation's safety and confirmed that ammonia would not pose any greater risk to the public or the airport staff than any other conventional large chiller solution. In fact, large ammonia chillers had been already used before in more densely populated applications without any safety compromises.

50

51

Stuttgart Air port-2300kW capacity installed by Grasso Nederland

Air conditioning
Stuttgart Airport

UNEP, ECA meeting, 2008

52

53

A public building in hannover

Has been air conditioned using three air cooled 700kW system each using 150kg of ammonia refrigerant.

- New design (PHEs and spray type shell & tube evaporator)
- Better efficiency (>30%) than HFC134a
- Less charge (0.02 to 0.5 kg/kW) for dry and flooded evaporation
- Higher discharge pressure (up to 40 bar) for heat pump
- Safety level increased significantly towards “zero leak”

54

Ammonia for Air Conditioning and Commercial Refrigeration

Migros supermarket in Zurich ammonia system is used for both space air conditioning as well as for refrigerated display cabinets.

- Ammonia A/C with central plants
- Ammonia display freezer cabinets
- Independent circuits
- Secondary refrigerants used-Srini Mega food park in India

55

AMMONIA GLYCOL SYSTEM

56

ASHRAE HVAC&R INDUSTRY NEWS

Semi-Hermetic Ammonia System Heats, Cools Dutch Business, Apartment Complex

EINDHOVEN, The Netherlands—An ammonia heat pump has been installed to heat and cool 40,000 m² of apartments and business premises in the Netherlands. The remodeled office complex, a former factory for conglomerate Philips, will use the 800 kW ammonia heat pump system fitted with two twin screw compressors for space heating during the winter and air conditioning during the summer. One of the compressors is redundant in case the system fails. An ammonia heat pump was selected to heat and cool the building complex due to its high-efficiency, zero global warming potential and zero ozone-depleting potential, said the developer. 18 October 2018

The complete Ammonia Chiller package including electric starter panel and all wiring at the P&T building, Copenhagen.

57

58

Jhonson controls uses ammonia system to air condition 5000 sq.m of office area using Four ammonia water chilling units each of 2MW capacity

59

Logan City Council south of Brisbane -Australia

60

Logan City Council south of Brisbane -Australia

Converted the old fashioned existing air cooled R22 based air conditioning system to a new water cooled NH₃ based system.

Not only did this new system reduce Logan City Council's annual energy consumption by around 50%; it also eliminated any commercial and environmental risks associated with future releases of chemical refrigerants.

The new water chillers have a combined capacity of 1200 kW. They are state of the art with built-in speed control, desuperheaters for heat recovery, less than 25 kg NH₃ charge per unit and computerized control and monitoring systems.

The new NH₃ based system replaced two existing R22 based plants. The performance of the new system has exceeded expectations to such an extent that the chilled water supply temperature set point to the various air handling units had to be increased during commissioning. This, of course, improves energy efficiency further.

The new water chillers feature an IPLV of close to 10; a vast improvement on the old R22 system with a coefficient of performance (COP) of around 2.8

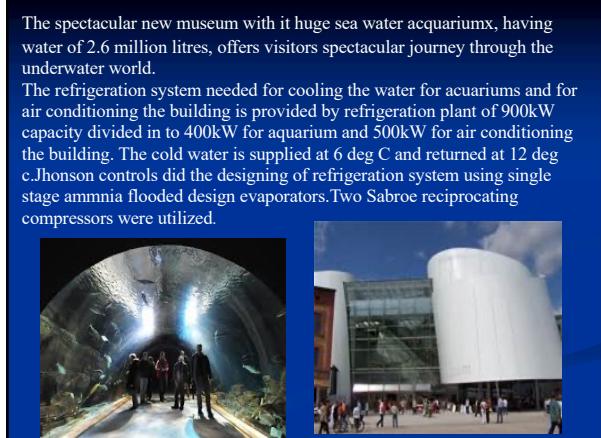
61

Star Refrigeration Roof Top Units using Low charge Ammonia systems Roche Headquarters -Germany

62

Boden-Württembergische Landesbank in Stuttgart

63


Yasushi Sasaki, Mayekawa at ATOM America 2017-Sandigo California

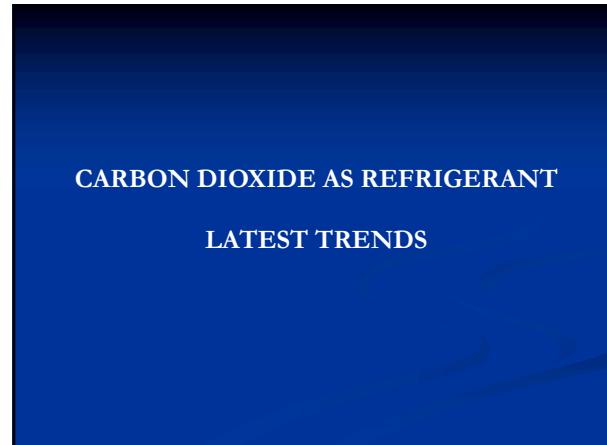
One project using ammonia for residential district heating in an area with total of 700 households had experienced very high -COP compared to traditional HFC refrigerants. The COP was 5.35 compared to 3.57 delivered by traditional HFC systems, overall it was 156% more efficient.

Similarly, Mike Kallas of U.S. low charge package solutions manufacturer Azane Inc. -Part of Scottish firm Star Refrigeration indicated that based on analysis, we estimate that 70% of all buildings would use ammonia roof top packages for office and retail buildings.

A similar system has been provided for department store for air conditioning with 213lbs. Of ammonia refrigerant providing chilled water at 45.0°F and with air cooled condenser. Also at Napoleon, OH and a bakery in Portland with 450lbs of ammonia charge.

64

65


US Seafoods to replace R22 with ammonia-ammonia21 News

U.S. Seafoods of Seattle will install Ammonia freezer equipment after being found guilty of violating the Clean Air Act by releasing ozone-depleting refrigerant R22 from two of its fish processing vessels in Alaska. Environmental Protection Agency (EPA) investigators discovered that in 2012 the freezers ..(ASHRAE NEWS Letter -November 2017)

66

67

68

CARBON DIOXIDE AS REFRIGERANT		
Critical Temperature	30.98 Deg C	73.77 bar a
Triple Point	-56.55 Deg C	5.1796 bar a
	45 Deg C	100 bar a
→	40Deg C	91.48 bar a
	0 Deg c	34.85 bar a
	-20 Deg C	19.696 bar a
	-40 Deg C	10.04 bar a
	-78.5 Deg C	Atmospheric Pr.

69

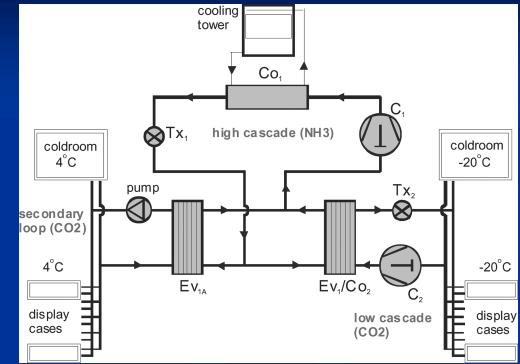
CARBON DIOXIDE AS REFRIGERANT		
ADVANTAGES AS REFRIGERANT		
1. Low GWP/No ODP		
2. Natural Refrigerant		
3. Non Toxic/Non Flammable		
4. High Density-Hence smaller system		
5. Small Compressor Size-Nearly 6 to 8 Times smaller		
6. Smaller Piping-Less insulation		
7. High Heat transfer Coefficients		
8. Smaller Condensers/Evaporators		
9. Low Pressure losses		
10.High Efficiency in Sub Critical Cascade Applications		
11.Positive Pressures in Low Temperature Applications		
12.Low Cost compared to any other refrigerant		

70

CARBON DIOXIDE AS REFRIGERANT		
DISADVANTAGES AS REFRIGERANT		
1. High Discharge Pressures		
2. Very Low Critical Temperature- +31.8 deg C		
3. Limited Flexibility in Applications		
4. Cascade Coolers are More expensive		
5. Heavier than Air-Suffocation in Higher Concentrations		
6. 400 PPM in Atmosphere-Less than 800 PPM allowed -EN 13779-5000 PPM Max Work place concentration		
7. Odourless-Detectors are required		
8. Solid Phase above atmospheric Pressure-Safety Valves , drains open to atmosphere		
9. Liquid to Gas expansion ratio is very high		
10.Liquid Traps & also Gas Traps must be avoided		
11.Liquid line leakage Most Dangerous- -78.5 Deg C Temperature		
12.Moisture Less than 5 PPM-Not soluble in Refrigerant		
13.Only Gas Charging-Liquid Charging Vacuum-Thermal Shock		

71

CARBON DIOXIDE AS REFRIGERANT		
APPLICATIONS IN INDIA		
SUB CRITICAL SYSTEMS-CASCADE		
1. High Stage R134a, or R404A		
2. Low stage Carbon Dioxide		
OR		
1.High Stage Ammonia		
2.Low stage carbon Dioxide		
3.OR		
4.Secondary Coolant as brine in super markets		


72

CO₂ in Domestic Application

Coca Cola Company uses both R134a and CO₂ for its 550-litre Refrigerators, with the result that systems operating with CO₂ consume 20 to 30% less energy. The application is in supercritical range i.e. condensing temperatures are above 31.2°C

73

Cascade Ammonia CO₂ system for super Markets

74

CO₂ Ammonia Cascade

75

AMMONIA-CO₂ USED AS BRINE SYSTEM –FRUIT STORAGE-HOLLAND

76

CO₂ Bus Air Conditioning

CO₂ A/C installation: August 1996
Operation hours: 1700

77

HYDROCARBONS AS REFRIGERANTS

78

Typical applications for hydrocarbons are:

- Domestic refrigerators and freezers
- Bottle coolers
- Ice cream freezers and commercial freezers
- Commercial refrigerators
- Beer coolers
- Beverage dispensers
- Dehumidifiers
- Heat pumps
- Supermarket refrigeration (in combination with secondary cooling or as a high temperature stage in a cascade CO₂ system)
- Small air conditioners

79

Most Important Hydrocarbons as Refrigerants

	Formula	Refrigerant	Boiling Point-°C	Critical Temperature-°C
N-butane	C ₄ H ₁₀	R600	-0.5	152
Iso-butane	C ₄ H ₁₀	R600a	-12	135
propane	C ₃ H ₈	R290	-42	96.6
propylene	C ₃ H ₈	R1270	-47.7	91
ethane	C ₂ H ₆	R170	-88.7	91
Ethylene	C ₂ H ₄	R1150	-103.8	9.5

80

Hydrocarbons As Refrigerant As Replacement

HFC	HC alternative	Applications
R134a	R600a	Household appliances
R134a	R290/600a mixtures	Commercial applications
R404A,R507A	R290,R1270 & their mixtures	Industrial plants- Petrochemicals
R407C	R290,R1270	Air conditioning and heat pump systems
R410A	R1270/170 mixtures	Deviations due to refrigerating capacity & pressure levels
R23,R14	R170,R1150	Low temperature cascades
R227ea	R600a	High temperature applications

81

Hydrocarbon as refrigerant

1. Butane has been used in more than 300 million Domestic Refrigerators and now finding use in smaller commercial systems.
2. Propane in central air conditioning systems report 10 to 30% energy savings and with minimum changes can be used in current installations using R22 refrigerant
3. Unilever uses propane in 360 liters ice cream freezers and compared to R404A reports on an average 9% power savings over R404A

82

Hydrocarbons as refrigerant

Butane is very successful in more than 300 million domestic refrigerators currently being used.

Pepsi has compared the results and indicate that small drink chillers with 150g refrigerant consumes 27% less energy than those using R134a refrigerant

1. With the support from international organizations, China has converted 18 room Air conditioner making plants to R290 which has a capacity of 45,00,000 units per year
2. They have also 3 three no compressor production lines to produce 54,00,000 unit per year
3. Up to August 2019, 1,60,000 units have been installed as room Air conditioners
4. Godrej has introduced 6,00,000 units in the Indian market

83

84

R-290 PROPANE A.C.-CHINA-(More than 3, million)

85

Energy-Efficient Propane (HC-290) Based Room Air Conditioners by Godrej & Boyce

86

PROPANE FOR AIR CONDITIONING

Germany-The Municipal corporation has installed unit using propane for cooling the servers and for air conditioning.

The system is of 20kW capacity using 2.5 kg of propane(R290).

The system is working since 2011.-
Eurammon

87

PROPANE FOR HEATING/AIR CONDITIONING-2x250kW

For shopping center in Mythen center AG-Switzerland uses propane for heating and air conditioning.

The units are designed to work round the clock having high COP and EER by means of high performance-frequency controlled compressors. The system per unit uses 15kg of refrigerant

88

PROPANE CO₂ CASCADE

89

**API 619 Propane Refrigeration Package
Caim Energy, Rajadhan**

90

91

White Paint That Could Reduce Need for AC

Purdue University engineers have created radiative cooling white paint that can keep surfaces up to 18°F (10°C) cooler than their ambient surroundings. According to the researchers, the paint would replace the need for air conditioning by absorbing almost no solar energy and sending heat away from the building and into deep space. Compared with commercial white paint, Purdue's paint maintains a lower temperature under direct sunlight and reflects more ultraviolet rays, according to the researchers.-29-10-2020 ASHRAE news

92

THANK YOU
Questions?

Ramesh Paranjpey
Fellow Life member ASHRAE
ramesh.paranjpey@gmail.com
Cell No. 9822398220
Web: <http://ramesh-paranjpey.com>

93